Levo-tetrahydropalmatine attenuates mouse blood-brain barrier injury induced by focal cerebral ischemia and reperfusion: Involvement of Src kinase

نویسندگان

  • Xiao-Wei Mao
  • Chun-Shui Pan
  • Ping Huang
  • Yu-Ying Liu
  • Chuan-She Wang
  • Li Yan
  • Bai-He Hu
  • Xin Chang
  • Ke He
  • Huan-Na Mu
  • Quan Li
  • Kai Sun
  • Jing-Yu Fan
  • Jing-Yan Han
چکیده

The restoration of blood flow following thrombolytic therapy causes ischemia and reperfusion (I/R) injury leading to blood-brain barrier (BBB) disruption and subsequent brain edema in patients of ischemic stroke. Levo-tetrahydropalmatine (l-THP) occurs in Corydalis genus and some other plants. However, whether l-THP exerts protective role on BBB disruption following cerebral I/R remains unclear. Male C57BL/6N mice (23 to 28 g) were subjected to 90 min middle cerebral artery occlusion, followed by reperfusion for 24 h. l-THP (10, 20, 40 mg/kg) was administrated by gavage 60 min before ischemia. We found I/R evoked Evans blue extravasation, albumin leakage, brain water content increase, cerebral blood flow decrease, cerebral infarction and neurological deficits, all of which were attenuated by l-THP treatment. Meanwhile, l-THP inhibited tight junction (TJ) proteins down-expression, Src kinase phosphorylation, matrix metalloproteinases-2/9 (MMP-2/9) and caveolin-1 activation. In addition, surface plasmon resonance revealed binding of l-THP to Src kinase with high affinity. Then we found Src kinase inhibitor PP2 could attenuate Evans blue dye extravasation and inhibit the caveolin-1, MMP-9 activation, occludin down-expression after I/R, respectively. In conclusion, l-THP attenuated BBB injury and brain edema, which were correlated with inhibiting the Src kinase phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Intensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion

Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...

متن کامل

Quantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat

Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015